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We introduce a model of interface pinning on pointlike defects distributed randomly over the

plane.

The model is relevant for the interface between immiscible fluids in a disordered two-

dimensional medium (Hele-Shaw cell) or for dislocation pinning. In the limit of small defect strength,
a scaling argument is given that provides the mean curvature of the interface as a function of the
defect density and strength and of the pressure. The model is also analyzed numerically in the con-
tinuum using an original transfer-matrix algorithm. The numerical results support the theoretical
prediction for low defect strength. An effective surface tension at a scale much larger than that of
the defect separation can be defined. The change in surface tension is shown to be proportional to
C*203/2, where C is the defect concentration and o the dimensionless defect strength.

PACS number(s): 68.10.—m, 68.45.Gd

L. INTRODUCTION

Wetting is strongly affected by the presence of hetero-
geneities. The apparent surface energy is modified by
the presence of defects and, moreover, hysteretic effects
appear that signal the limitation of the notion of an ef-
fective (average) surface tension [1,2].

Concerning the morphology of these interfaces, some
recent progress has been achieved through the description
of their motion by a Langevin equation [3,4]. The most
common problem that has been addressed recently is the
detailed shape of the interface between immiscible fluids
in a quasi-two-dimensional case. This upsurge of activ-
ity was first motivated by the disagreement between the
prototypical example of interface motion in a noisy envi-
ronment, i.e., the Kardar-Parisi-Zhang equation [5], and
a series of experimental results [6]. This recent effort has
emphasized the importance of a quenched heterogeneity
versus an annealed noise [3,4].

Apart from the Langevin equation approach, some
more specific models, such as the one introduced by
Cieplack and Robbins [7,8], have been introduced in the
past in order to model the fluid interface in idealized two-
dimensional media. Although two and three dimensions
exhibit serious differences, the two-dimensional case al-
ready contains part of the intrinsic difficulties and corre-
sponds to physical cases (wetting in a confined geometry
[9], dislocation pinning, etc.). The interest of these mod-
els is to avoid the introduction of simplifying assumptions
that are not totally controlled (such as the representation
of the interface as a single-valued function, which may
lead to the question of the relevance of directedness in
such models). One conclusion of Cieplack and Robbins
is that one encounters two distinct regimes depending on
the defect strength. A large strength gives rise to an in-
vasion percolation model. In this case, the easiest pore is
invaded at each time step. No collective motion is imple-
mented in this model (although “bursts” or “avalanches”
can be defined a posterior: [10]). The weak disorder case
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gives rise to a very different behavior where invasions are
not triggered by single defects, but rather correspond to
collective processes [8,11]. The weakness of this model
comes from the purely geometric construction of the in-
vasion domain and thus the absence of a real dynamics
based on a description of the viscous flow. The described
evolution from a given configuration results from the suc-
cessive application of simple geometrical constructions.

We introduce a model in a similar spirit, whose aim
is thus not to describe the dynamics of the real motion.
We rather focus on the possible interface conformations
under specific conditions. The question of whether these
conformations are really accessible will not be addressed,
although some major difference may arise from this con-
straint. Our model bears some of the features of the
directed polymer problem [3] and of spiral percolation
[12].

II. MODEL

For the sake of concreteness, we will discuss the con-
struction of our model with respect to an application
for a two-fluid interface in a two-dimensional medium.
If we consider a Hele-Shaw cell with a constant thick-
ness h (along the z direction) and an interface between
two fluids that has a small curvature in the (z,y) plane,
the two curvatures decouple and it is possible to inte-
grate all z dependences. The Laplace law relates the
pressure drop across the meniscus to the total curvature
Ap = v(1/R; + 1/R3), where v is the surface energy of
the interface between the two fluids and R; and R; are
the two principal radius of curvature. A full integration
in the z direction permits one to express the pressure
drop across the interface as a function of the curvature
1/p in the (z,y) plane as

Apz'y(a—i-%). (1)
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In this expression a depends on the cell thickness, as well
as on the spreading coefficients S, defined as S = vy; — s,
the difference of surface energies, where ; and v, are
the surface energies between the wall and fluid 1 and the
wall and fluid 2, respectively. The other coefficient b is a
numerical factor that also depends on the wettability of
the walls. In the case of a completely wetting fluid the
factor b = 7 /4, as established by Park and Homsy [13].

A defect in this problem can be represented as a small
zone on one wall of the Hele-Shaw cell with different wet-
tability properties. It is possible to solve exactly the
deformation of the interface as it passes on the defect.
However, this problem involves some subtleties, such as
a kink of the interface as it crosses the defect boundary,
which are not expected to play any major role in a coarse
grained description. Moreover, the local distortion of the
interface is very dependent on the defect shape.

This constitutes a motivation for defining an “equiva-
lent” defect whose size is reduced to a point. Of course,
in so doing, one should define properly the characteristic
feature of the defect to be considered. Let AS be the
difference of spreading coeflicients of a clean surface and
that of a surface with defects and d is the size of the
defects. The force exerted on the defects by the inter-
face due to the wettability of the walls is proportional to
dAS. Conversely, distorting the interface gives rise to a
force proportional to the cell thickness and the two fluid
surface energy hy. When gravity is unimportant, it has
been shown [14] that the strength of the defect could be
well captured by a dimensionless coefficient f = dAS/h~.
Keeping f constant as d goes to zero leads to the equiv-
alent pointlike defect we were looking for.

As the defect size goes to zero, the strength f is an
appropriate measure of its strength. However, we would
like to introduce another quantity that is directly related
to f. The maximum force that a defect can support can
be uniquely characterized by the change of angle a that
the interface can assume before passing across the defect
or encircling it. This angle has, moreover, a simple geo-
metric definition (see Fig. 1) and thus can easily be ac-
cessed experimentally. Some simple computation shows
that this angle is uniquely a function of f and thus is
fully consistent with the notion of pointlike defects. We
will thus stick to this definition in the following.

It is interesting to note here that the pointlike defect is
a singular limit that introduces a different feature in the
problem. Indeed, when the size of the defect is greater
than zero, the interface shape is a well defined problem.

FIG. 1. The defect, shown here as a black dot, is charac-
terized by the maximum angular discontinuity o the interface
can assume on the defect. Keeping a constant, we consider
here defects whose physical size tends to zero.
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Specifying the starting point and tangent, then the in-
terface shape is uniquely determined. When the defect
size goes to zero, all configurations of interfaces that go
through the defect cannot be distinguished. Thus an in-
terface that reaches the defect can either leave the defect
undisturbed, as if it was just tangent to the defect, or
it can be bent on the defect by any angle in the inter-
val [0, o] if a denotes the strength of the defect. Thus we
have lost the uniqueness of the solution. This is an essen-
tial feature also related to the appearance of hysteretic
effects on a surface supporting pinning sites.

Let us now introduce our model. The surface is char-
acterized by a random Poisson distribution of pointlike
defects. The area concentration is C and the defects’
strength is equal to . We introduce a pressure AP such
that the radius of curvature of the interface on a clean
surface is R. We deal with a static problem so that the
pressure is uniform in the fluid. Thus a typical inter-
face configuration consists of arcs of circle of radius R
between defects, as shown in Fig. 2. On a defect the
interface can bend and get an angular discontinuity 6
such that @ € [0, @]. The latter rule implies that a large
number of interfaces with the same starting point and
tangent can be found.

These interfaces are called “admissible” if they obey
the above rules. The complete enumeration of these ad-
missible conformations is generally impossible. As we
mentioned above, any physical interface has to be admis-
sible. However, incorporating a faithful dynamics may
select as accessible only a subset of all admissible inter-
faces. Our goal is here to try to explore some properties
of admissible interface geometries, leading to bounds on
accessible interfaces. We underline that no statement can
be made on the possible accessibility of a particular in-
terface conformation from an initial state. Although it
is quite possible that under a given dynamics this acces-
sibility makes the observed interfaces different from the
one we characterize here, such a difference is, however,
expected to vanish for small defect strength.

To characterize our problem, we compute the upper
envelope of all admissible interfaces. We will in the fol-
lowing compute the large scale curvature of this envelope,
which is definitely an upper bound on the curvature of
all admissible and thus accessible interfaces.

FIG. 2. Example of interfaces going through defects for a
fixed defect strength «. Different interfaces correspond to
different R, the radius of curvature on the clean surface.
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III. NUMERICAL SIMULATIONS

The algorithm we have chosen in order to compute the
envelope of all interfaces is a transfer-matrix method. We
first distribute points (defects) randomly in a rectangle
of size R x 1, with the prescribed concentration C. In
order to initialize the system, we consider that all sites
in the lower half of the rectangle can be reached by an
interface with an incident angle on the defect equal to 0.
These sites are called “active.” Then a new rectangle is
considered to the right of the preceding one, as shown in
Fig. 3. Starting from any active site, we construct all
possible arcs that connect to another site such that the
angular discontinuity at the starting defect is in the ad-
missible interval [0, a]. The sites that can be reached are
then called active and the angle of the interface reach-
ing the defect is recorded. In the spirit of considering an
upper bound on the curvature, only the largest incident
angle is kept. Once all possible active sites have been
considered, we can forget about the first rectangle and
keep only the list of the active sites (together with their
respective incidence angle) in the last rectangle. Then a
new rectangle is generated and the same procedure is ap-
plied again as many times as needed. In each rectangle,
the topmost active site is recorded.

The mean (large scale) shape of interfaces is circular,
as will be demonstrated below. Thus, in order to follow
the interface for a large distance, we have added some
flexibility in the relative position and orientation of each
rectangle. More precisely, we first translate the rectangle
vertically so that its mean height is equal to that of the
topmost site of the preceding rectangle. Then the rect-
angle is rotated so that the mean incident angle becomes
horizontal. However, we limit the rotations to a maxi-

FIG. 3. Schematic plot of the transfer-matrix algorithm
used. We proceed in series by considering a series of rectangles
such as the three shown in the figure. We compute for each
point in the rectangle (¢ + 1) if it can be reached from an
accessible site of the previous rectangle (7). In this case, it
becomes accessible. Only the accessibility in the previous
rectangle is needed and thus the status of sites in rectangle
(i — 1) can be forgotten. In order to follow the envelope of all
interfaces, we allow the rectangles to be translated or rotated
with respect to the previous one. The overlap of rectangles is
taken care of.
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mum value such that the new rectangle never overlaps
the second neighboring rectangle on the left. When the
rotation is not zero, we add points only in the domain
that is not already covered by the preceding rectangle.
The number of points is computed so that the same con-
centration is obeyed.

The strip that is generated this way can achieve al-
most any conformation and thus we can follow the en-
velope even if the mean curvature is not zero. Figure 4
shows such an example. In order to get good statistics,
we deliberately ignored the eventual overlap of the strip
with its past, provided the overlap takes place at dis-
tances such that more than two rectangles are involved.
Locally, in two consecutive rectangles, all interfaces fulfill
self-avoidance. In the case of a large scale crossing of the
interface with itself, then the total envelope geometry is
not physically meaningful, but it provides a natural way
to accumulate a long series of data and thus get an ac-
curate estimate of the curvature. Moreover, pieces of it
that are not too long are physically acceptable conforma-
tions. This trick of forgetting large scale self-avoidance
of the strip can be seen as a way to perform an ensem-
ble average with the least possible size effect due to the
initialization of the active sites in the first rectangle.

The parameters of the model are the defect concen-
tration C, defect strength «, and radius of curvature on
the clean surface R. What is measured is the effective
large scale radius of curvature p of the envelope. Using
nondimensionalization, it is possible to get rid of one pa-
rameter R. The dimensionless concentration and radii
are

C* =CR?,
R* =1, (2)
p* =p/R.
The strength « is already dimensionless.
Of particular interest is the pressure — or, equiva-

lently, R in our model — such that the macroscopic cur-
vature is equal to zero, i.e., p = oco. In the case of a
radial injection of a liquid from a point, this pressure is
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FIG. 4. Example of the envelopes computed for a fixed
defect strength a = 0.22 (12.6°). Different curves correspond
to different values of C*, the dimensionless concentration of
the defects.
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sufficient for the fluid to go to infinity. We will report be-
low some analytical and numerical results concerning this
breakthrough pressure. Before giving the numerical re-
sults obtained using the previously described algorithm,
we will introduce an analytical approach in the limit of
a weak pinning and discuss the analogy of this problem
with other related statistical models.

IV. WEAK PINNING LIMIT

Let us consider the limit of weak defects that appear
amenable to a scaling argument. “Weak defects” means
that the maximum allowed change of angle on a defect
a is small compared to unity. Since we are interested
in the pressure range where the large scale curvature of
the interface is close to zero (straight interface) the lo-
cal curvature of the interface on a clean surface will be
large. Therefore, in this limit we will substitute the cir-
cular arcs between two defects by straight segments. We
will, however, reintroduce the true curvature in order to
estimate the total curvature of the interface.

We consider a medium of size L and interfaces that
start at a prescribed point Ay with an orientation along
the = axis. There is a large number of admissible inter-
faces, where angular discontinuities at each defect are less
than a. We focus on the interface that has the smallest
average curvature at a large distance from the starting
point.

Let us consider a given interface. It consists of a set
of defects (A;) connected by arcs of radius R between
each consecutive pair of defects (A;, A;11). Let us denote
by 6(z) the orientation of the tangent to the interface.
Between two defects, we have df(x)/ds = —1/R, where s
is the curvilinear abscissa along the arc and thus dz/ds =
cos(f). Let us call d; ;41 = ||4;Ai41|| the cord length.
The change of angle along the arc is exactly 6;;+1 =
—2arcsin(d; ;+1/2R). Provided that we consider weak
defects, we will have d < R, so that we can use the
approximation

—d; i1 ‘ (3)

0iiy1 = 7

The important feature here is the fact that § is simply
proportional to the distance d between defects.

In addition to the continuous rotation of the tangent
along the arcs, we also have to consider the local jumps
in orientation on defects. On a defect A;, 0 is discon-
tinuous and we have [0] = §; < a where [] denotes the
discontinuity.

If A, denotes the end point at a distance L from the
starting point, the total change of angle along the inter-

face is thus
A= Z 8 + E 0iit1- (4)

Using Eq. (4), we see that the expression of A can
be approximately mapped onto a directed polymer prob-
lem in random media at zero temperature [3]. In this
mapping, the interface geometry would correspond to a
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polymer configuration. Considering the interaction en-
ergy density to be 1/R per unit length for the clean sur-
face and being limited to a minimum value of —« on de-
fects, the clockwise rotation of the interface —A would be
the total energy of the polymer. The interface with the
largest curvature in these conditions corresponds to the
conformation of the polymer with the minimum energy,
namely, the conformation obtained at zero temperature.

The mapping is only approximate because the energy
gain on defects is not intrinsically determined, but rather
depends on the neighboring defects. Moreover, the model
contains a number of specific features that may be worth
investigating in more detail before jumping to the con-
clusion that this model is in the same universality class
as directed polymers.

One essential feature is that the model is defined in
the continuum. This may appear as a detail that should
not affect the universality class of the model, but some
care should be taken. Indeed, since the distance between
defects can be arbitrarily small, the local “curvature,” es-
timated between two defects as the change of orientation
divided by the length of the connection, is unbounded. A
quantitative analysis of the curvature distribution in the
Appendix reveals that the cumulative probability that
the curvature exceeds z scales as £~2. One should note,
however, that the distance between defects has to be
small in this case, so that over a fixed distance, these large
local curvatures may be significantly reduced. However,
it cannot be excluded that the coarse-grained description
of the medium has to include a power-law distribution of
large local energies. Furthermore, it is known from a pio-
neering work of Zhang [15] that such a wide distribution
of energies can induce a breakdown of universality.

Also we would like to mention that the interface gen-
erated in the model is very closely related to the spiral
percolation hull [12]. The constraint of chirality intro-
duced in this model appears here naturally. Instead of
generating the percolation cluster and then determining
the hull of the cluster, one could generate the spiral path
on the boundary of the cluster directly. Depending on
the concentration of the system, the global curvature of
these spiral paths will be different, as in the case of the
interfaces in this model.

V. SCALING ARGUMENT

In order to gain some insight into the dependence of
the overall behavior with the model parameters, we first
develop a simple argument based on typical values. The
first difficulty to face is the fact that the model is defined
in the continuum. We introduce an additional (artificial)
constraint on paths. For a path that reaches a defect
A, we will consider continuation of this path in a cone
defined by the angular interval [@’, a]. The mean distance
éx of the closest point in this cone to A is such that
%‘T?le&m?c =1or

2
dr = —(a — a’)C" (5)
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The mean change of orientation of the path over the last
one is (a + a')/2 on the defect, plus a rotation —dz/R
due to the curvature of the arc between A and the next
defect. The mean curvature 1/p is thus

1/p=(a+d')/26z - 1/R. (6)

When o' is chosen to be close to a, the gain on the de-
fect is close to its maximum, but dz is large so that 1/p
approaches —1/R. On the contrary, for a small o/, z
is small but the gain on the defect is small. There is an
optimum intermediate value that can be determined by
differentiating Eq. (6) with respect to a’. This optimum
value is o = a/3. Since the value of o' is arbitrary,
we determine o’ so as to maximize p. This leads to the
expression

2
1/p=—== o®2C*¥2 —1/R. 7
/p 373 @ / (7)

Multiplying this last equation by R, we get the dimen-
sionless equivalent

1/p" = 575 (@3CT) -1, (8)

When the pressure is such that the macroscopic curvature
vanishes 1/p* = 0, this last equation can be rewritten as

C* x a3, 9)

From this expression we arrive at the conclusion that the
curvature is simply corrected from that of a clean surface
by a constant term that depends on the density of defects
and on their strength. From the two-dimensional results
recalled in the Introduction, we see that the expression of
the line tension in the plane is not modified; however, the
constant additional term that depends on the aperture of
the Hele-Shaw cell is changed. This result is expected in
the sense that the line tension is determined by the area
of fluid-air interface, which is not affected by the presence
of the defects on the walls. Moreover, the constant term
in the expression of the capillary pressure does depend
on the spreading coefficient of the fluid on the wall and
the latter is naturally modified by the presence of defects.
Therefore, the key result is that the Laplace law remains
functionally valid, i.e., not affected by the presence of
defects, whereas the surface energy of the wall is changed
to first order by a term proportional to the square root
of the concentration of defects times the cube of their
strength.

VI. NUMERICAL RESULTS

The numerical simulations have been performed for dif-
ferent values of the defect strengths a in two dimensions.
The defect strength o changes from 0.18 (10.31°) to 0.30
(17.18°). In each case the total length s of the strips
is considered up to 500 and the concentration C is 1000
points (defects) per unit area. The total angle of rota-
tion B(s) has been determined as a function of the total
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FIG. 5. Plot of the total angle of rotation 3(s) against the
total arc length s for a particular value of the defect strength
a and the radius of curvature R.

length s. In Fig. 5 we have plotted 3(s) versus s for a
particular value of @ and R. To avoid the initialization
effect on the interface we have ignored the data points
up to s = 100 at the beginning. We see in this figure
that the angle 3 increases linearly with the curvilinear
abscissa. This implies that the shape of the envelope is
circular on average. The slope of 3(s) computed from
a linear regression (least-squares fit) gives the radius of
curvature p.

The macroscopic curvature has been estimated for a
fixed defect strength o for different values of the pres-
sure difference AP, i.e., the radius of curvature R on the
clean surface. It should be mentioned that the fluctua-
tions increase as one approaches a flat interface 1/p = 0.
The curvature 1/p and radius R are transformed in di-
mensionless quantities 1/p* and C* using Eq. (2). Figure
6 shows a typical evolution of 1/p* as a function of C*.
We observe a regular evolution of the curvature, with no
particular singular behavior close to zero curvature.

From these data, we can compute, for any prescribed
defect strength, the concentration for which the curva-
ture vanishes, i.e., the pressure to exert so that the in-
vading fluid can escape to an infinite distance in a cell
with a radial injection. This estimate of C*(1/p* = 0),

0.15
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0.05 | ]
0.00 | ' ]
—005 | ]
_0.10 L . 4
-0.15

1/p

160 180 200 220 240 260
c

FIG. 6. Evolution of the macroscopic curvature 1/p* as
a function of the dimensionless concentration C* for a fixed
defect strength o = 0.23 (13.27°).
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FIG. 7. Dimensionless concentration C* for which the
macroscopic curvature vanishes (1/p* = 0) as a function of
defect strength a.

obtained by Newton’s method, is shown in Fig. 7 as a
function of the defect strength a.

In Sec. III, we developed a theoretical scaling argu-
ment that gives a simple scaling behavior of C*(1/p* = 0)
as a~3. This prediction is tested in Fig. 8. We observe
excellent agreement with the theoretical prediction over
the entire range of a~3.

There are some difficulties in obtaining the estimate of
curvature for very small and very large defect strengths.
In the case of a large defect strength the rotation of the
strips are restricted by the maximum angle of rotation.
In the case of smaller defect strengths one has to consider
larger values of R and hence wider rectangles at each
step of the transfer matrix; this implies more defects and
finally a prohibitive increase in computer time.

Finally, we also considered the geometry of the en-
velope. The analogy with the directed polymer prob-
lem suggests the study of the eventual self-affinity of the
interface. We analyzed the evolution of the angle ver-
sus the total chord length for the envelope. We com-
puted the power spectrum of this function, taking care
of the nonuniform distribution of sampling points with
an adapted Fourier transform algorithm. We also got rid
of the first transient part of the function and, finally, we
removed the end-to-end linear variation so as to avoid
introducing a spurious discontinuity in the signal. The
average of the power spectrum is shown on a log-log scale
in Fig. 9. A power law with a slope equal to —2 fits the

500 \ :

400 | S

*

300 ) o

*

C'(1/p'=0)

200 |

100

0 L L L
0 50 100 150 200

-3

FIG. 8. Plot of C* versus o~ 3. The theoretical prediction
C* « a~? is shown as a dotted line.
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FIG. 9. Power spectrum of the slope of the interface as a
function of the envelope length. A power law with an expo-
nent —2 is shown on top of the data as a straight line.

data very well, revealing a Hurst exponent of 1/2. There-
fore the derivative of the envelope behaves as a random
walk, just as if the local change in angles on defects were
uncorrelated. As a consequence, the envelope geometry
can be compared to the integral of a random walk with a
roughness exponent 3/2 (although some method of esti-
mating this exponent, such as the study of the standard
deviation of the height over a window of varying size,
would give 1, as discussed in Ref. [16]). Therefore this
conclusion violently contradicts the result that may have
been anticipated by the directed polymer analogy. In
the latter case the Hurst exponent of the interface would
have been equal to 2/3, so that the power spectrum of
its slope would have had a slope of —1/3, very different
from the observed —2.

VII. DISCUSSION

There is abundant experimental literature on the wet-
ting properties of heterogeneous surfaces (see, e.g., Ref.
[17]). However, in most cases, these data concern three-
dimensional geometries that cannot be transposed to the
case of a confined fluid in two dimensions because of the
nonlocal expression of the contact line energy that arises
from integrating the surface deformation away from the
contact line. Morever, the surface heterogeneities are sel-
domly characterized in a quantitative fashion. Thus a
meaningful comparison with our result cannot be drawn.

Some recent experimental work has been carried out in
a Hele-Shaw cell with controlled heterogeneities [18,14].
The pressure, however, could not be measured in this
set-up and thus a quantitative comparison with our pre-
diction is impossible. It would be of great interest to
quantify these measurements and estimate the change in
surface energy due to the presence of a defect.

The most severe weakness of our model is the absence
of a proper description of the dynamics of the interface.
We simply consider configurations of the interface and
among these we postulate that the one with the largest
curvature is significant. However, in our model, as well
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as in a number of others, there is a very large number of
possible configurations that fulfill the prescribed bound-
ary conditions. Therefore, the equilibrium configuration
reached at some stage assuming a quasistatic external
forcing cannot be simply determined by the geometrical
constraints on the interface. The full dynamics is nec-
essary to find the correct equilibrium state. Depending
on the relative weights of viscous friction, inertia, and
interaction energy terms, different configurations can be
reached. More importantly, not only the precise confor-
mations are susceptible to differ, but also the statistical
features may be drastically altered.

It is worth emphasizing that the same weakness af-
fect most models that intrinsically ignore the true dy-
namics. Examples include sandpile models [19], which in
most cases do exhibit self-organized criticality, but are
in conflict with most experimental observations of real
sandpiles [20]. Hysteretic effects, which have been often
invoked to explain this discrepancy, are essentially due
to inertia effects of falling sand grains. Quasistatic in-
vaston of porous media by a nonwetting fluid has been
often claimed to be described by invasion percolation
[21]. However, the proper dynamics of the invasion is
at variance with predictions of this model. A proper de-
scription of additional dynamics, such as that proposed
by Maldy et al. [22], dramatically alters the statistics of
“avalanches” in the pressure signal, which is no longer a
simple power-law distribution. The frictional motion of
spring-block systems (Burridge-Knoppof model), which
has been claimed also to be critical generically [23], also
escapes from criticality when the dynamics is carefully in-
tegrated numerically [24]. Systems for which the model
could eventually be relevant must (i) have negligible in-
ertia and (ii) be overdamped.

It is worth emphasizing the deep analogy between the
problem considered in the present study and the pinning
of dislocations by impurities in metals. The latter subject
has received considerable attention in the past [25]. In
particular the collective role of defect arrays has been
highlighted through pioneering works by Friedel [26] and
Mott and Nabarro [27] to cite only seminal contributions
to the subject. Friedel has given an argument based on
the work needed to go across a defect, which leads to an
expression of the yield stress o, scaling as

oy x a®/2ct/2, (10)

where a and ¢ have the same meaning as introduced ear-
lier. It is to be noted that the result recovers precisely
the scaling dependence of the line tension in our analy-
sis, although the route to the result is rather different.
It has been argued that this result holds only for dilute
and strong defects, whereas, for concentrated and weak
defects, Mott and Nabarro have proposed an alternative
approach, which leads to a different scaling

oy oc a/3c2/3, (11)

The latter prediction is based on a “random-walk” type
of geometry of the dislocation with straight connections
between pinning sites. Although the two predictions are
different, it is difficult to distinguish between them con-
sidering the experimental data and the small range of
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variation of & in most cases.

The surprising feature in the comparison between the
classical approaches to dislocation pinning and the wet-
ting interface problem developed here is the close corre-
spondence of our result with Friedel’s scaling law, in spite
of the fact that it should apply only for strong defects.
Our numerical results, together with the theoretical anal-
ysis provided above, suggest that the limitation generally
accepted for Friedel’s analysis might not be relevant. We
note that Mott and Nabarro’s result is not observed in
our numerical simulation, although we considered weak
defects for which it should hold. It should finally be noted
that all analytical approaches to the problem ignore cor-
relations in the spatial distribution of pinning sites as
well as the “dynamics” of the problem — resorting to
static equilibrium considerations — and thus they rely
on some assumptions concerning the interface or disloca-
tion line geometry, which has to be confirmed, finally, by
either experiments or numerical simulations.

VIII. CONCLUSION

We have introduced a geometrical model of interface
pinning defined in the continuum with a Poisson distri-
bution of pinning sites or defects. We have introduced
a maximum limit for all admissible interfaces, as “en-
velopes.” The latter provide a natural way to get an
accurate estimate of the maximum curvature of the in-
terface and give access to a numerical study through an
efficient and original transfer matrix algorithm. We have
observed a regular evolution of the curvature of the in-
terface envelope with the concentration for a fixed defect
strength without any particular singular behavior at zero
curvature. It is also found in our model that the Laplace
law is obeyed at the macroscopic level, which allows us
to define an effective surface energy on a substrate with
random defects. This macroscopic surface energy is mod-

_ified from that of the clean surface by an additional term

that depends nonlinearly on the defect concentration and
on the defect strength. This property, derived by a sim-
ple scaling approach, is confirmed by the results of the
numerical simulations.
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APPENDIX: CURVATURE DISTRIBUTION

Two defects that are very close, with a particular ori-
entation, can give rise to a large curvature locally. The
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probability distribution of these curvature has a power-
law tail, which can be estimated as follows.

Let us consider a defect located at the origin and an
interface that arrives on this first defect parallel to the z
axis. After the defect the interface is an arc of a circle,
which can be written

y = az — =2 /2R, (A1)
where a is the tangent orientation right after the defect,
and thus fulfills 0 < a < a.

The effective curvature o is defined as the change of
angle divided by the distance. For weak defects a < 1,
the curvature can be written

o=afz—1/R. (A2)

The probability that the curvature exceeds a value s is
thus equal to the probability that a defect is located in
the domain
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IA

Y ax — 22 /2R,

(A3)

v

Y (s +1/2R)z2.
Since we deal with a Poisson distribution, this probability
is

a/(s+1/R)
P(o>3s) = / az — (1/R + s)z*Cdz
0

a3

(A4)

Thus the local curvature distribution can achieve large
values locally. Due to the behavior of P(s) at infinity
P(s) ~ s2, the second moment of the curvature dis-
tribution diverges. Therefore, this distribution has an
infinite variance. This feature may induce locally very
strong pinning sites through a cooperative action of a
doublet of defects.
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